Evolution of dealloying induced strain in nanoporous gold crystals.

نویسندگان

  • Yu-Chen Karen Chen-Wiegart
  • Ross Harder
  • David C Dunand
  • Ian McNulty
چکیده

We studied the evolution of dealloying-induced strain along the {111} in a Ag-Au nano-crystal in situ, during formation of nanoporous gold at the initial stage of dealloying using Bragg coherent X-ray diffractive imaging. The strain magnitude with maximum probability in the crystal doubled in 10 s of dealloying. Although formation of nano-pores just began at the surface, the greatest strain is located 60-80 nm deep within the crystal. Dealloying induced a compressive strain in this region, indicating volume shrinkage occurred during pore formation. The crystal interior showed a small tensile strain, which can be explained by tensile stresses induced by the non-dealloyed region upon the dealloyed region during volume reduction. A surface strain relaxation developed, attributed to atomic rearrangement during dealloying. This clearer understanding of the role of strain in the initial stages of formation of nanoporous gold by dealloying can be exploited for development of new sensors, battery electrodes, and materials for catalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the microstructure of nanoporous gold: an X-ray diffraction study.

The evolution of the grain structure, internal strain, and the lattice misorientations of nanoporous gold during dealloying of bulk (3D) Ag-Au alloy samples was studied by various in situ and ex situ X-ray diffraction techniques including powder and Laue diffraction. The experiments reveal that the dealloying process preserves the original crystallographic structure but leads to a small spread ...

متن کامل

Effect of Ag–Au composition and acid concentration on dealloying front velocity and cracking during nanoporous gold formation

Nanoporous gold has many potential applications in various fields, including energy storage, catalysis, sensing and actuating. Dealloying of Ag–Au alloys under free corrosion conditions is a simple method to fabricate nanoporous gold. Here, we systematically investigate the dealloying rate of Ag–xAu alloy for a range of alloy compositions (x = 20–40 at.%) and nitric acid concentration (7.3–14.9...

متن کامل

Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications

We report a surface modification protocol to control nanoporous gold (NPG) disk morphology and tune its plasmonic resonance. Enlarged pore size up to !20 nm within 60 s dealloying time has been achieved by adsorbing halides onto alloy surfaces in-between two dealloying steps. In addition, plasmonic resonance has been significantly red-shifted by up to !258 nm by the surface modification. Furthe...

متن کامل

Nanoporous gold formation by dealloying: A Metropolis Monte Carlo study

A Metropolis Monte Carlo study of the dealloying mechanism leading to the formation of nanoporous gold is presented. A simple lattice-gas model for gold, silver and acid particles, vacancies and products of chemical reactions is adopted. The influence of temperature, concentration and lattice defects on the dealloying process is investigated and the morphological properties are characterized in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 9 17  شماره 

صفحات  -

تاریخ انتشار 2017